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AN EFFICIENT PARALLEL MULTIGRID SOLVER FOR 3-D 

CONVECTION-DOMINATED PROBLEMS* 

IGNACIO M. LLORENTEt, MANUEL PRIETO-MATIAS*, AND BORIS DISKIN§ 

Abstract. Multigrid algorithms are known to be highly efficient in solving systems of elliptic equations. 

However, standard multigrid algorithms fail to achieve optimal grid-independent convergence rates in solving 

non-elliptic problems. In many practical cases, the non-elliptic part of a problem is represented by the 

convection operator. Downstream marching, when it is viable, is the simplest and most efficient way to solve 

this operator. However, in a parallel setting, the sequential nature of marching degrades the efficiency of the 

algorithm. The aim of this report is to present, evaluate and analyze an alternative highly parallel multigrid 

method for 3-D convection-dominated problems. This method employs semicoarsening, a four-color plane- 

implicit smoother, and discretization rules allowing the same cross-characteristic interactions on all the grids 

involved to be maintained. The resulting multigrid solver exhibits a fast grid-independent convergence rate 

for solving the convection-diffusion operator on cell-centered grids with stretching. The load imbalance below 

the critical level is the main source of inefficiency in its parallel implementation. A hybrid smoother that 

degrades the convergence properties of the method but improves its granularity has been found to be the 

best choice in a parallel setting. The numerical and parallel properties of the multigrid algorithm with the 

four-color and hybrid smoothers are studied on SGI Origin 2000 and Cray T3E systems. 
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1. Introduction. The convergence properties of multigrid algorithms are defined by two factors: (1) 

the smoothing rate, which describes the reduction of high-frequency error components, and (2) the quality 

of the coarse-grid correction, which is responsible for the dumping of smooth error components. In elliptic 

problems, all the smooth fine-grid components are well approximated on the coarse grid built by standard 

(full) coarsening. In non-elliptic problems, however, some fine-grid characteristic components that are much 

smoother in the characteristic direction than in other directions, cannot be approximated with standard 

multigrid methods (see [2, 3, 4, 7]). 

Several approaches aimed at curing the characteristic-component problem have been studied in literature. 

These approaches fall into two categories: (1) development of a suitable relaxation scheme to eliminate 

not only high-frequency error components but the characteristic error components as well; (2) devising an 

adjusted coarse-grid operator to approximate well the fine-grid characteristic error components. 

In many practical problems appearing in computational fluid dynamics (CFD), the non-elliptic part is 
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represented by convection. For convection, the most efficient and comprehensive relaxation is downstream 

marching. If the target discretization is a stable upwind scheme, the downstream marching reduces all (high- 

frequency and smooth) error components, solving a non-linear convection equation in just a few sweeps 

(a single downstream sweep provides the exact solution to a linearized problem). Incomplete LU (ILU) 

decomposition methods act similarly, given a suitable ordering [6]. The downstream marching technique was 

successfully applied in solving many CFD problems associated with non-recirculating flows (see, e.g., [4]). 

However, if the discretization is not fully upwind (e.g., upwind biased) the downstream marching in its pure 

form is not viable. One of the most efficient (also marching type) alternatives often applied to the schemes 

that cannot be directly marched is a defect-correction method (see, e.g., [29, 41, 42]). Usually the efficiency 

of these methods is quite satisfactory. Sometimes, however, the convergence rate of the defect-correction 

method is grid dependent (see [8, 9]). Another, very important, drawback associated with all marching and 

ILU methods is a low parallel efficiency, because the efficiency of these methods is essentially based on the 

correctness of the sequential marching order. 

In methods belonging to the second category, most of the operations can be performed in parallel. These 

methods are much more attractive for massive parallel computing. The necessary requirements for coarse- 

grid operators used in second-category methods were formulated in [46]. Among the options available in 

conjunction with full coarsening are Galerkin coarsening [47], matrix-dependent operators [6], and corrected 

coarse-grid operators [17]. Analysis in [46] showed that all these methods have certain drawbacks. 

Another way to construct an appropriate coarse-grid operator is to employ semicoarsening [7]. The 

multigrid method evaluated in this report uses semicoarsening together with a well-balanced correction 

of discrete operators to maintain the same cross-characteristic interaction (CCI) on all the grids. The 

relaxation scheme employed in this algorithm is a four-color plane-implicit scheme enabling a very efficient 

parallel implementation. The resulting algorithm is an efficient highly parallel method for solving the three- 

dimensional (3-D) convection operator defined on cell-centered grids with stretching. 

When studying the optimal parallel implementation of a numerical algorithm, one should consider both 

the numerical and parallel properties. The best approach in a sequential setting may not be the optimal one 

on a parallel computer. The multigrid method proposed in this report exhibits a very fast convergence rate 

but the granularity of its smoother (four-color relaxation) is finer than that of other common smoothers as 

zebra or damped Jacobi. In order to improve the granularity of the solver, we have studied a hybrid smoother 

that uses a four-color, zebra or damped Jacobi update depending on the level. As we will show, although 

this smoother degrades the convergence properties of the original method, it improves the execution time 

of the multigrid cycle in a parallel setting, and so becomes a trade-off between numerical and architectural 

properties. 

Section 2 formulates the model problem for the convection equation and introduces the notion of the 

low-dimensional prototype. The multigrid method for the one-dimensional prototype is described in Section 

3. The 3-D discretizations and the difficulties encountered in multigrid methods solving the convection 

operator are explained in Section 4. Section 5 presents the multigrid cycle for the full-dimensional problem. 

Section 6 includes numerical results confirming the efficient solution of the convection equation on uniform 

and stretched grids. Section 7 demonstrates an extension of the tested method to the convection-diffusion 

equation. The parallel properties of the MPI implementation of the code on SGI Origin 2000 and Cray T3E 

systems are discussed in Section 8. Finally, the main conclusions and future research directions are presented 

in Section 9. 



2. Convection Equation. The model problem studied in this Section is the 3-D constant-coefficient 

convection equation 

(2.1) ±-(a-v)u = f(x,y,z), 

where ä = (ai,a2,a3) is a given vector and |5| = i/a? + a\ + a\. The solution U(x,y,z) is a differentiable 

function defined on the unit square (x,y,z) € [0,1] x [0,1] x [0,1].   Let tv = a2/a1 and tz = a3/oi be 

non-alignment parameters. For simplicity, we assume Oi > a2,as > 0 and, therefore, l>ty,tz>0. 

Equation (2.1) can be rewritten as 

(2.2) dtU = f(x,y,z), 

where £ = *+'»*+*** is a variable along the characteristic of (2.1).  Equation (2.1) is subject to Dirichlet 

boundary conditions at the inflow boundary x = 0 and periodic conditions in the y and z directions 

(2.3) 17(0, y, z) = g(y, z), U{x, y, z) = U[x, y + l,z), U(x, y, z) = U(x, y,z + l), 

where g(y, z) is a given function. 

In the 3-D constant-coefficient case, which is studied in this paper, characteristics of (2.1) are straight 

lines (characteristic lines) aligned with the velocity direction. A function is called a characteristic component 

if it is much smoother in the characteristic direction than in other directions. 

The problem (2.2) is discretized on the 3-D Cartesian uniform grid with mesh sizes h in the three 

directions (target grid). Let uilti3tis be a discrete approximation to the solution U(x,y,z) at the point 

(x,y) — (iihihh.izh). To derive a proper discretization, we exploit the idea of a low-dimensional prototype 

introduced in [3]. Briefly, the low-dimensional prototype is a convenient discretization of the differential 

operator in the grid induced on the characteristic manifold by the intersections of this manifold with the 

full-dimensional Cartesian grid. For our studies, we choose the low-dimensional prototype to be the (one- 

dimensional) first-order accurate discretization of the first derivative, corresponding to the pure upwind 

scheme with an additional streamwise dissipation 

(2.4) j-[uiui2li3 - Wji-l.is-fn.is-«» ) _ T~(Mn+l,*2+«j,,J3+^ -2uh,h,i3+uh-l,i2-ty,ia-uJ =/*i,!2,i3> 

where the discretization of the right-hand-side function is /j,,i2,i3 = f (i\h,iih,ish) and /i? = h^Jl + t2
y + t\. 

3. Multigrid Cycle for Low-Dimensional Prototype. In this section, we define a multigrid cycle 

for the low-dimensional prototype problem. All the components of this cycle serve as bases for constructing 

corresponding components of the 3-D multigrid cycle described in Sections 4 and 5. 

On the grid induced on the characteristic line, the one-dimensional prototype can be reformulated as 

2 (Ui - Ui-i j - A f wi+i - 3ui + 2ui-i J, i = 1, 

- Wi-i 1 - AI ui+i - 2ui + Ui-i j, i = 2,3,... N - 1, 

-Ui-i j - A( 2ui+i -3ut + Mj-i j, i = N, 

2(ui-ui-\ i = N + l. 

See Figure 1 for the pictorial explanation of the discretization grids. 

(3.1) Lxui = - 
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FIG. 1.  Cell-centered discretization of the low-dimensional prototype. 

3.1. Relaxation Scheme. A multicolor (with p colors) relaxation order is defined as follows. One 

multicolor relaxation iteration consists of p sweeps, each one passes through (approximately) N/p cells. In 

the first sweep, all the points with coordinates i = 1 + jp (j is a non-negative integer) are relaxed; in the 

second, all the points with coordinates i = 2 + jp are relaxed (in this sweep the new values at previously 

relaxed points are used); and so on until all the points are updated. 

The efficiency of a multicolor relaxation scheme applied to the convection operator improves when more 

colors (in the streamwise direction) are used. In fact, the downstream relaxation is an extreme case where 

the number of colors coincides with the number of grid nodes in the streamwise direction. However, the main 

subject of this paper is parallel multigrid algorithms, therefore, relaxation schemes with only a few colors are 

considered. Such schemes are very efficient in parallel implementation. In our tests, we have experimented 

with p = 4 because it appears to be a good tradeoff between parallel and convergence properties. In fact, as 

we will show in Section 8, a suitable combination of different multicolor smoothers in different grids, where 

the four-color smoother is always applied for fine grids above some critical level, is found to be the optimal 

solution in a parallel setting. 

The value of A = 0.25 has been chosen to provide a good smoothing factor for the four-color relaxation 

scheme. 

3.2. Intergrid Transfers. The cell-centered location of the unknowns suggests that the coarse-grid 

nodes are shifted relative to those of the fine-grid. In our method, we add two additional nodes to all the 

grids. These nodes are located precisely at the inflow and outflow boundaries (see Figure 1). 

The first type of intergrid transfers encountered in multigrid methods is the computation of a coarse-grid 

approximation to the current fine-grid residual function. In the proposed method, an upwind restriction is 
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FIG. 2.  Uniform-grid discretization stencil. 

Ri   =   |n, 

Ri     =     \\T2i-\ + ru-2], 

where R and r denote the coarse- and fine-grid residual functions respectively (see Figure 1). 

The second type of intergrid transfers is the coarse-grid correction to the current fine-grid solution. The 

coarse-grid correction V is prolongated (linear interpolation) to the fine grid by 

(3.3) 

V2i+i    =    USVi+i+Vi] 

where v is the correction to the fine-grid solution approximation (see Figure 1). 

The idea of using a first-order upwind restriction operator and a linear second-order prolongation oper- 

ator was borrowed from [17]. 

4.  Full-Dimensional Discretizations. 

4.1. Uniform-Grid Discretization. The 3-D discretization is obtained from the low-dimensional 

prototype discretization (2.4) by replacing function values at the ghost points (points with fractional indexes) 

by weighted averages of the values at adjacent genuine grid points. The resulting narrow discretization scheme 



is defined by 

(4.1) 

-"    ^2i,«2v (l + 2A)uilij2,j. 

-(l + A)^(l-tr) 

+*z 

-A((I-*,) 

+tz 

+ X(ty(l-ty) 

+tz{l-tz) 

1(1 — ^y)u»i—l,ia,t3 + ^BwJi-l.«2-l>*8 ) 

I (1 — i^JUjj-l^j^g-l + Ij/Uij-l,«2-1,23-1 

I  (1 — ij,JMj1+ljj2ij3  + t^Mjj+1^2+1,83   I 

Ml - tj,)Uj1+l)i2,j3 + l   + ij/Uti+l,«2 + l,«3 + l J J 

( "«1>«2 —1|>3   _  ^MJl^2,J3   "r Uil ,i2 + li«3  I 

|Wii,i2,«3-l ~^uhM,h + w«i,*2,*3+l ) )   I  = /»i>*2,»s! 

ii =2,3,...JV-1,«2 = l,2,...iV,t3 = l>2)...Ar,JV = 1/h. 

See Figure 2 for a representation of the discretization within the domain. 

The inflow boundary conditions at ii = 1 are discretized 

(4.2) 

Lh M
1,J2,J3 —  he (2 + 3A)«i,i2>i3 

_(2 + 2A)((l-^) 

^ 2 

-A((I-*,) 

+A(k(2-^) 

+ %(2-^) 

(1 - ty)u0,i2,i3 + ^-«O.ta-l.iaJ 

(1 - -f-)Wo,J2,«3-l + "f u0,i2-l,«s-l 

(1   -  ty)U2,i2,iz   +  tyU2,i3 + l,i3) 

(1  - *y)«2,i2,i'8 + l  + *1/W2,J2 + 1,J3 + 1 J 

«l,t2-l,i3   _2wl,i2,i3  +U1,»2 + 1,«3J 

«l,j2,i3-l ~ 2ui,i2ji3 + Wl,i2,t3+lJ = /: 

i2 = l,2,...JV,i3 = l,2,...N,N = l/h;u0th,i3 = g(i2h,i3h). 

1,»2,»3> 

«2 
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FIG. 3. Rectangular-grid discretization stencil. 

The discrete operators near the outflow boundary are also derived from (3.1). 

(4.3) 

LhuN^i3 = X7 I (1 + 3A)ujv,i2,,3 

-(1 + A) f (1 - tz) ((1 - ty)uN-iti2,i3 + tyuN-i,i2-i,ia) 

+tz f(l - ty)uN-l,i2,i3-l + tj/WjV-l,«2-l,»a-l j ) 

— 2Af (1 - if) ((1 - ^>JV+l,i2,ia + ^«JV+l.fe+l.iaJ 

+ if f(l  -  -|-)«JV+l,l2,»3 + l  +  "2""iV+l,i2 + l,i3 + lJ   ] 

+ Af   Y(2-  ^) f«JV,z2-l,»3   - 2uJV,J2,i3   + UJV,t2 + l,»3J 

+^(2 - 2|^) («Ar,i2,*3-i - 2MJV,12,J3 + uAT,i2,J3+i) j j = fN,h,i3i 

i2 = l,2,...N,i3 = l,2,...N,N = l/h. 

(4.4) 

LhUN+1,i243   =   ± I  UjV+l,«2,i3   -   f (!  -  V)    ((X ~  |-)UJV,i2,i8  +  ^WJV,i2-l,i3J 

+ ¥   ((! - %-)uJV,i2,is-l + ^•WJV.fe-l.ia-l) J j  = /- JV+l,t2,«3) 

t2 = l,2,...Ar,i3 = l,2)...JV)JV = l/fc. 

4.2. Rectangular-Grid Discretization. The coarse grids are 3-D Cartesian rectangular grids with 

aspect ratios my = hx/hy and mz - hx/hz, where hx, hy and hz are the mesh sizes in the x, y and z 



directions respectively. The basic discretization to the problem (2.2) on a coarse grid is defined as 

T(hx,hy,hz) — _i_ 
n,«2,J3  —  he 

(4.5) 

(l + 2A)uil,i2,i3 

-(1 + A) ( (1 - Sz) \{l - Ss/)Uii-l,i2+fty,i3+*. + syuii-U2+(ky+l),i3+kz ) 

+ SZ ((1 - Sy)uh-i,i2+kv,i3 + (k,+l) + Syuh-hi2+(ky+l),i3+(k*+l)) 

-Al (1 - Sz) f (1 - Sj,)«ii+l,«2-ft„,»s-ft* + s!/uii + l,«2-(fc» + l),»3-ft»J 

+Sz [(1 - Sy)uii + l,J2-it!,,i3-(fcz+l) + s3/u»i+l,*2-(*»+l)>»'s-(** + 

+Al Sy(l - Sy) f «ij.ta-l.is _ 2Uj1)»2lj3 + «JLia+l.isJ 

+ S2(1  - S2)    f«i1,i2,i3-l  ~ ^U^fc.jg  +«»1,I2,J3 + lJ   )    I   =  /»1,*2,«3! 

*! = 2,3,... Nx, i2 = 1,2,...TVi3 = 1,2,... JVZ, JVX = l/ht, Ny = I/A,, 7V2 = I/A,, 

where ft£ = hxJl + t2
y+t2

z, ky + sy = -m,,^, /s2 + sz = -mA, fcyA are integers, 0 < sv,sz < 1. See 

Figure 3 for a pictorial explanation of the discretization stencil inside the domain. Note that on uniform grids 

(my = mz = l) the discretization (4.5) corresponds to (4.1) with sy = 1 - ty, sz = 1 - tz, and ky = kz = -1 

provided 1 > ty > 0 and 1 > tz > 0. 

The discretization in the inflow boundary cells (h = 1) is defined similarly. Note, however, that the set 

of the non-alignment parameters is different. 

r(hx,hy,hz) 
Ul,*2,t3   —   hi 

(4.6) 

(2 + 3A)«i,,;2,i3 

-2(1 + A) ((1 - Sx) 

+sz 

-A((I-»*) 

+sz 

+|(s»(l-a») 

+sz(l -sz) 

+Af.?2/(1-Sy) 

+sz{l-sz) 

i2 = l,2,...Nv,ia = l,2,...Nz,Ny = l/hy,Nz: 

(Jl - Sj,)u„]i2+j!)ji3+jfcj! + Syu0,i2 + {kv+l),i3+~kz ) 

((1 - 5!/)u0,i2+fc„,i3 + (Äs+l) + SVUOM+(ky+l),h+(k,+l.)) 

Ml - Sy)U2,ii-ky,iz-kz + sS/M2,i2-(fcj,+l),i3-^ j 

Hi - sy)u2,i2-ky,is-(kz+i) + syu2,i2-(*;„+i),i3-(^+i)J 

(«1,12-1,13 ~~ 21*1,^^3  +Wl,i2+l,»3J 

(Ul,i2,»3-1 ~~ 2U1,«2,J3  + U1,J2,J3 + 1 j j 

("1,12-1,23 _2U1,J2,«3   +Ul,i2 + l,isJ 

(U1,»2,J3-1 ~~ 2M1JJ2]J3  +Ul,t2,i3+lJ  J    I    =  /l,»2,*3J 

= 1/A«, 

where fc„ + s„ = -m„%- and fcz + §z = -m2%, fcs and &z are integers, 0<sy,sz<l °y 2 



The outflow discretizations are defined as 

r(hx,hyihs) 
uN,i2,h —  h( 

(4.7) 

(1 + 3A)ujv,j2,j3 

-(1 + A)((1-*,) 

+sz 

-2X((1-SZ) 

+Sz 

+ %(Sy(l-Sy) 

+sz(l -sz) 

+ X(sy(l-Sy) 

+Sz(l-sz) 

i2 = l,2,...N,i3 = l,2,...N,N = l/h. 

( (1 - Sy)uN-l,i2+ks,is+k, + SyuN-l,h+(ky+l),i3+kt) 

((1 - sy)uN-l,i2+ky,i3+(kz+l) + syuN-l,h+(ky+i),h+(k,+i 

((1 ~ sy)uN+\M-~ky.h-~k* +^UJV+l,»2-(*»+l),J3-*«J 

[p- ~ Sv)uN+l,i2-~ky,i3-(k,+l) + SyUN+l,h-{ky+^)^-(h + l)) 

fwjV,j2-l,J3 -^uN,i2,h +uN,i2 + l,h) 

(UiV,«2,J3-l   ~ 2«JV,i2,«3  + UN,i2,iS + l 

( UjV,t2-l,i3 ~ 2Wjv,j2,J3 + MJV,i2+l,i3J 

r(hx,hy,hs) 

(4.8) 

"Af+l,i2,t3 = £7 I "iV+l,i2,t3 -  f (! ~ «*)   ((! _ Sy)«jv,i2,i3 + Sy«JV,i2-l,isJ 

+sz ((1 - sy)uN,i2,is-i + syUAr,»2-i,«3-i) )  I = /N+l,«2,«3! 

t2 = l,2,...JV,i3 = l,2,...JV,iV = l/h. 

4.3. Cross-Characteristic Interaction. The cross-characteristic interaction (CCI) introduced by a 

discrete operator (inherent CCI) can be quantitatively estimated by the coefficients of the lowest pure cross- 

characteristic derivatives appearing in the first differential approximation (FDA) (see [45]) to the discrete 

operator. In our model problem, the CCI appears only because of interpolation in the y-z plane. Therefore, 

the true CCI is actually determined by the FDA coefficients of dyy and dzz. The FDA to the uniform-grid 

discretization (4.1) taken for a characteristic component u (dyu > d$u,dzu > <%«) is given by 

(4.9) 

where 

(4.10) 

FDA(Lh) =%- T£h2dvy - T?h2dzz, 

rph    __ ty\\        ty) 
V 2/1,/T+tJ+if 

2hv/i+tJ+*l' 

for the inner points (discretizations (4.1) and (4.3)) and 

Th_   fr(i-fr) 

2 hy/l+tl+tl ' 

for the boundary points h = 1 and h = N + 1 (discretizations (4.2) and (4.4)). 



The first differential approximation to the coarse-grid discretization is 

(4.12) FDA(L^^^) =de- TJih"h''Mhldy„ - T{
z
h"h"Mhldz 

where 

rp(hX,hy,hZ)     _ Sy(l—Sy) 
J-v 

\*-16) T(hx,hy,hz) _       «,(!-«,) 

for the inner points (discretizations (4.5) and (4.7)) and 

rp(hX,hy,hZ)       Sy(l~-Sy) 

\iAi> rp(hx,hy,hz)   _ g,(l-g,' 
T h^i+q+t 2"' 

for the boundary points (discretizations (4.6) and (4.8)). 

Previous studies on different types of non-elliptic equations (see [3] and [4]) have shown that the main 

difficulty in constructing an efficient multigrid solver is a poor coarse-grid approximation to the fine-grid 

characteristic error components. It was observed that a coarse-grid operator defined on a grid built by full 

coarsening unavoidably introduces a too strong CCI. On the other hand, a narrow discretization (4.5) on a 

semicoarsened grid (only the z-directional mesh size is doubled) results in a coarse-grid CCI that is lower 

than required. However, operator (4.5) on the semicoarsened grid can be supplied with additional terms 

(explicit CCI), so that the total CCI would be exactly the same as on the fine grid. Thus, one could derive 

an appropriate coarse-grid operator by comparing the FDA (4.12) with the target-grid FDA (4.9) 

(4.15) 

where 

Z,<fc..*».*-)Uiiii2iJs = L(il"h"'hz)    -Ay{uiui2-hh - 2ufc.fe.i3 + Uii,«+i,«s) 

A      __       rph  _ rp{hx,hy,hz) 

(4-16) A   =     Th_rjft.,h»,M_ 

The idea is that the characteristic error components oscillating highly in the cross-characteristic directions 

are eliminated in relaxation, while the smooth characteristic components are well approximated on the coarse 

grids with operator (4.15). 

4.4. Uniform Cross-Characteristic Interaction. In general problems, where the non-alignment 

parameters are changed from node to node (e.g., because of variable coefficients or grid stretching), the 

target-grid CCI may vary as well. It has been shown in [3] that for vertex-centered formulations, treatment 

of a variable CCI is not a problem. The fact that the grids are nested ensures the quality of the coarse- 

grid correction to the characteristic error components. The situation is different for cell-centered grids. 

In the case of (near) diagonal alignment, the inherent CCI vanishes on all the grids, and therefore all 

the characteristic error components must be reduced in the coarse-grid correction. For non-nested grids, 

however, the characteristic lines passing through the grid nodes on different grids are parallel but do not 

coincide (see Figure 4). This implies that the fine-grid characteristic components oscillating highly in the 

cross-characteristic direction cannot be approximated on the coarse grids. The proposed cure is to supply 

the target grid discretization with explicit CCI terms (similar to the coarse-grid explicit CCI terms) ensuring 
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FIG. 4. Characteristic lines in different grid levels. 

that the total CCI is never vanishes. In the multigrid solver reported in this paper, we impose a uniform 

CCI, i.e., the total CCI in each discretization node satisfies 

(4.17) Ttotal 
_ 0.19 
~     h   ' 

where h = hy = hz is the same on all the grids. This value of Ttota, approximately corresponds to the 

maximum uniform-grid inherent CCI of the discretization (4.2). The maximum is taken over different values 

of the non-alignment parameters ty and tz. 

5. The Multigrid Method. The proposed multigrid method for solving the convection equation 

employs semicoarsening and narrow coarse-grid discretization schemes supplied with explicit terms (which 

are discrete approximations to hydyy and hzdzz with suitable coefficients) to maintain on all the grids the 

same uniform CCI. This construction ensures that all the characteristic error components are eliminated 

fully by the coarse-grid correction. The non-characteristic error components must be reduced in relaxation. 

Successive semicoarsening implies a fast decrease in the inherent CCI on coarse grids and, hence, a fast 

increase in the weight of the explicit terms in the coarse-grid operators (since the total CCI remains fixed). 

Eventually, on coarse grids, the cross-characteristic coupling defined by the explicit terms becomes dominant. 

Thus, plane smoothers should be applied to reduce the non-characteristic error components. 

The tested semicoarsening multilevel V{vi,v2) cycle consists of a four-color plane-implicit relaxation 

scheme, an upwind restriction operator for the residual transfer, and a linear prolongation operator for 

the coarse-grid correction. On each level, except the coarsest one where the problem is directly solved, vx 

relaxation sweeps are performed before transferring residuals to the coarse grid and v2 sweeps are performed 

after receiving coarse-grid corrections. 

5.1. Plane Relaxation Scheme. The plane relaxation four-color scheme employed in the multigrid 

cycle is derived from the one-dimensional scheme described in Section 3.1. Now, the number of colors 

determines the order of relaxing the y-z grid planes. The planes with the x-axis coordinates i\ = 1 + jp, 

(j € Z) are relaxed first, then the planes with ix = 2 + jp, and so on; the last planes to be relaxed are those 

with ii = 4 + jp.  In the plane relaxation scheme, all the solution values on the same y-z grid plane are 
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FIG. 5. Full-dimensional stencil of the restriction operator. 

updated altogether. Simultaneous solution of all the equations centered on a plane would reduce residuals 

in this plane to zero. However, an exact solution is not needed [23, 37]; the planes are solved approximately 

by a single 2-D V(l,l) multigrid cycle with an alternating-line smoother. This inexact solution of the planes 

does not decrease the convergence of the multigrid algorithm. 

5.2. Intergrid Transfers.   The residual transfer to the semicoarsened grid is given by 

(5.1) 

h,ii,h — 2 1  ((1 ~~ S*) ((! ~~ Sv)r2ii,i2+ky,h+kt + sVr2h ,*2+*„+l,i3+* J 

+sz ((1 - 8y)r2iui2+ky,i3+k,+i + 8yr2i1,i2+ky+i1h+k,+i)) 

+ ((1 - S'z) ((1 - 4)r2il-l,i2+^,i3+A=L + Syr2h-l,i2+ks + l,h+k'J 

+s'z ((1 - s'y)r2il-l,i2+k'v,ia+K+1 + s'yr2h-l,i2+k'v+l,h+K+l)j 

where n,^^ = fi,,^,^ -£('l"ft!"'iz)«i1,i2,-u3 is the fine-grid residual function, and Rh,i2,i3 is the coarse-grid 

residual function. The non-alignment parameters for the restriction operator are defined as ky + sy = ~-fty, 

kz + sz = -^tz, k'y + s'y = -^ty, and k'z + s'z = -^tz, where ky, kz,k'y, and k'z are integers, 

0 < sy, sz, s'y, s'z < 1, and my and mz are the aspect ratios in the coarse grid. See Figure 5 for a representation 

of the restriction operator. 
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FIG. 6. Full-dimensional stencil of the prolongation operator. 

The coarse-grid correction operator is a linear interpolation defined by the following formulae. For the 

nodes with even ar-directional indices, 

V2i1,i2J3  =  \ I   f (1 - S'z)       ((1 - s'yWh-lJz+k^h+k',  + SyVn-l.iz+k'y + l^+K ) 

+s'z    ((1 - s'y)Vh-ij2+k'y,i3+k';+i + s'yV^^^+k^+i^+k't+i) j 

+sz    ^(1 - Sy)Vh^_-kytis_k,-i + SyViui2-ky-\,i3-k*-\) J J ' 

and for the nodes with odd x-directional indices, 

«2t1-l,i2)J3 — |(3((1-^)       [0- - ^y)Vii-l,i2+ky,is+k, +hVii-l,i2+ky + l<i3+k,) 

+sz     ^(1 - sy)Vh_lii2+kytis+kz+1 + syVh-\,i2+ky+l,i3+kz+\) J 

+ ((l-s'z)      ((1 - s'yjVi^iz-k'^ia-k', + SyVh,i2-ky-\,h-k'z) 

+s'z    ((1 - s'y)Vi^i2-k'y,h-k',-i + s'yViui2-kv-i,i3-k',-i) J 1) 

where V is the coarse-grid solution and v is the correction to the fine-grid solution approximation. The non- 

alignment parameters for the prolongation operator are similar to those defined for the restriction operator. 

See Figure 6 for a pictorial representation of the prolongation operator. 

5.3. Multigrid Cycle. In the full dimension, a multigrid V{v1,v2) cycle employing semicoarsening 

can be defined as the following five steps 

Step 1: Prerelaxation sweeps. The current approximation is improved by vx plane-implicit relaxation sweeps. 

(5.3) 
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Step 2: Residual transfer. The coarse-grid approximation to the fine-grid residual function is calculated by 

means of (5.1). 

Step 3: Coarse-grid solution. The coarse-grid problem is solved by the recursive call of the same V(vuv2) 

cycle. On the coarsest grid, the problem is solved directly. 

Step 4: Coarse-grid correction. The coarse-grid solution is interpolated by (5.2), (5.3) to the fine grid. The 

current fine-grid approximation is corrected. 

Step 5: Postrelaxation sweeps. The current fine-grid approximation is improved by v2 plain-implicit relax- 

ation sweeps. 

5.4. Implementation Aspects. The code has been implemented to deal with structured rectangular 

grids with stretching. A generalization of discretization (4.15) and intergrid transfers (5.1), (5.2), (5.3) is 

applied. The non-alignment parameters are different at each grid node. We could recompute and store the 

non-alignment parameters in the memory so we do not have to recompute them each time the residual, 

the metrics or the intergrid transfers are computed. However, such an approach increases the memory 

requirements of the code. 

Before applying the multigrid cycles, the metrics and the non-alignment parameters for the discretization 

in the left, central and right planes are calculated and stored for each node and grid. However, the non- 

alignment parameters for the intergrid transfers are recomputed each time the operators are applied. This 

solution provides a trade-off between computing and wasted memory. 

TABLE 6.1 

Asymptotic/geometric-average convergence rate for the solver-case combinations. 

643 1283 

case 1 case 2 case 3 case 4 case 1 case 2 case 3 case 4 

solver 1 0.07/0.06 0.06/0.05 0.09/0.07 0.04/0.04 0.08/0.07 0.06/0.05 0.10/0.08 0.04/0.04 

solver 2 0.16/0.18 0.11/0.10 0.25/0.28 0.08/0.07 0.24/0.29 0.17/0.19 0.39/0.44 0.10/0.08 

6. Numerical Results. The inflow boundary conditions for the test problems were chosen so that 

the function U(x,y,z) = cos(w(j/ + z - (ty + tz)x)) is the exact continuous solution of the homogeneous 

(fh,i3,is = °) problem (2.2). The initial approximation was interpolated from the solution on the previous 

coarse grid. 

The frequencies w = 8w for a 643 grid and to = low for a 1283 grid were chosen to reduce the total 

computational time exploiting periodicity and to provide a reasonable accuracy in approximating the true 

solution of the differential equation. Two cycles, with (solver 1) and without (solver 2) explicit CCI terms 

in coarse-grid operators, were compared on 643 and 1283 uniform grids for the non-alignment parameters 

• ty = 0.2 tz = 0.2 (case 1) 

• ty = 0.98 tz = 0.2 (case 2) 

• ty = 0.5 tz = 0.0 (case 3) 

• ty = 0.98 tz = 0.98 (case 4) 

Table 6.1 contains the asymptotic and geometric-average convergence rates and Figure 7 shows the 

residual history versus work units; the work unit is the computer-operation count in the target-grid residual 

evaluation. 

The plane solver used in the 3-D smoothing procedure is a robust two-dimensional (2-D) multigrid 

V(l,l)-cycle employing full coarsening and alternating-line smoothers; the approximate 2-D solution obtained 

after one 2-D cycle is sufficient to provide robustness and good convergence rates in the 3-D solvers. The 
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FIG. 7. Residual versus work units for V(l, 1) cycles with semicoarsening: Solver 1 (with explicit CCI terms) and Solver 

2 (without explicit CCI terms) for a 1283 grid and w = 167T. 

combination of semicoarsening, the four-color plane-implicit smoother, and the introduction of explicit CCI 

terms in grid discretizations (solver 1) yields a multigrid solver with fast grid-independent convergence rates 

for any angles of non-alignment. The algorithm without explicit CCI terms (solver 2) presents a worse and 

grid-dependent convergence rates. 

Stretched grids are commonly used in CFD grid generation to pack points into regions with large solution 

gradients while avoiding an excess of points in more benign regions, and to capture viscous effects in the 

boundary layers. The stretching of the grid in a given direction is determined by the stretching geometric 

factor ß (quotient between two consecutive space steps, hk = ßhk-\), which produces aspect ratios up to 

ßN~l if the three directions are equally stretched. In order to study the effect of stretching on the behavior 

of the solvers, the grids were stretched using a geometric factor ß = 1.1 (Figure 8), which produces aspect 

ratios up to order 105 on 1283 grids. 

Two multigrid cycles, with CCI correction in every grid operator (solver 1) and without explicit CCI 

terms (solver 2) were compared on 643 and 1283 stretched grids for the non-alignment parameters 

0.2 (case 1) 

= 0.2 (ca.se 2) 

• ty = 0.5 tz = 0.0 (case 3) 

• ty = 0.98 tz = 0.98 (case 4) 

Table 6.2 contains the asymptotic and geometric-average convergence rates and Figure 9 shows the 

• ty = 0.2 tz : 

• ty = 0.98 tz 
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FIG. 8. 163 stretched grid with geometric factor ß — 1.1. 
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FIG. 9. Residual versus work units for V(l, 1) cycles with semicoarsening: Solver 1 (with explicit CCI terms) and Solver 

2 (without explicit CCI terms) for a stretched 1283 grid and w = 167r. 

residual history versus work units. The multigrid cycle without explicit CCI terms (solver 2) always presents a 
grid-dependent convergence rate. The combination of semicoarsening, the four-color plane-implicit smoother, 

and a uniform CCI correction in all grids (solver 1) yields a multigrid solver with fast grid-independent 

convergence rates for any angles of non-alignment and grid stretching. 

16 



TABLE 6.2 

Asymptotic/geometric-average convergence rate for the solver-case combinations with grid stretching. 

643 1283 

case 1 case 2 case 3 case 4 case 1 case 2 case 3 case 4 

solver 1 0.10/0.07 0.10/0.07 0.11/0.08 0.10/0.07 0.10/0.07 0.10/0.07 0.12/0.09 0.10/0.07 

solver 2 0.13/0.13 0.23/0.18 0.23/0.20 0.22/0.18 0.20/0.21 0.23/0.27 0.30/0.36 0.24/0.28 

7. Efficient Solution of the Convection-Diffusion Operator. In this Section we will study the 

3-D constant-coefficient convection-diffusion equation 

(7.1) eAU = F(x,y,z) + (ö-v)f/, 

where ä = (ai,a2,a3) is a given vector and e is a positive scalar. The solution U(x,y,z) is a differentiable 

function defined on the unit square (x, y, z) € [0,1] x [0,1] x [0,1]. 

Equation (7.1) can be rewritten as 

(7.2) e(8xxU + dyyU + dzzU) = F(x, y, z) + \ä\d(U, 

and with the additional streamwise dissipation as 

(7.3) e(dxxU + dyyU + dzzU)=F(x,y,z) + \ä\(d(U-XhideiU), 

where löl = Ja? + al + ak, and £ = x+iy»+t^ is a variable along the characteristic of the convective part. 11      v   L       z      ■> Ji+tl+t% 
Equation (7.1) is subject to Dirichlet boundary conditions at the inflow boundary x = 0, Neumann boundary 

conditions at the outflow boundary x = 1 and periodic conditions in the y and z directions 

(7.4) U(0,y,z)=g{y,z),Ux(l,y,z)=0,U(x,y,z) = U(x,y+l,z),U{x,y,z) = U(x,y,z + l), 

where g(y, z) is a given function. 

For the diffusive part, the left-hand side of Eq. (7.3), on stretched grids, each cell can have a different 

aspect ratio. So its discretization is given by the following general discrete operator: 

~C     I       Uil—1,12,13 U»l.*2,»3 + uii,i2,h + M»'l+l,'2i«3 

hxh   hxh + hxh-i       hxh + hxil+1      hx^ + hxtl-i       hxtl + hxil+i 

(7.5) 
^€    .      Uil7i2 — iti3 + -) + ^*1,«2 + 1)«3 

hyi2   hyi2 + hyh-!     yhyh + hyi2+1      hyi2 + hyh-i       hyi2 + hyi2+i 
+ 

_Z^_f     Uh,i2,i3 — 1 -d 
«l,«2,»3        \   i        uil,h,J3+l     \. 

hzi3  hzis + hzi3-i       hzh + hzh+1      hzh + hzis-i       hzis + hziz+\ 

h = l,...,Nx,i2 = l,...,Ny,i3 = l,.-,Nz. 

We use the same multigrid method as the one previously applied for the convection operator (four- 

color plane-implicit relaxation scheme combined with semicoarsening). For the diffusion operator, however, 

symmetric (rather than upwind biased) versions of the intergrid transfers are preferable. For example, the 

restriction operator 

(7.6) 

and the prolongation operator 

(7.7) 

Rii,i2,ia — «l^ii.ij.ij + r2ti+l,»2,«3 )' 

«2ii,i2,i3 
=      4 I ^l-l,»2,«3 + 3Vilti2>i3 I, 

^2Ji-l,i2,i3      =      4 ( 3>Vii-l,i2,i3 + Mi,t2,«3 )' 
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(compare with (5.1)-(5.3)) were successfully used in [37] to build a robust multigrid method based on semi- 

coarsening combined with plane-implicit smoothing for solving the anisotropic diffusion operator (7.5). Vol- 

ume weighted versions of (7.6) and (7.7) are required for stretched grids. 

The intergrid transfers for the convection-diffusion equation are implemented as a weighted average of 

the operators (5.1) and (7.6) for the restriction operator and the operators (5.2)-(5.3) and (7.7) for the 

prolongation operator. Specifically, the operators (7.6) and (7.7) are taken with the weighting ^, while 

the weighting of the operators (5.1)-(5.3) is (l - y^Y If ^ > 1, only symmetric operators are used. 

Again, the inflow boundary conditions for the test problems were chosen so that g(y, z) = cos(w(y + z)) 

and Fiui2,i3 = 0. The initial approximation was interpolated from the solution on the previous coarse grid 

and the frequencies UJ - 8?r for a 643 grid and u - 16TT for a 1283 grid were chosen. Two multigrid cycles, 

with (solver 1) and without (solver 2) explicit CCI terms in operators, were compared on 643 and 1283 

uniform grids for the non-alignment parameters ty=tz- 0.5 and the following diffusive values: 

• case 1: e « 10-4, very small diffusion, the problem is convective dominated 

• case 2: e « |ä|ft, small diffusion, the physical diffusion is of the same order as the inherent numerical 

dissipation in the target grid 

• case 3: e « 6|ö|/i, intermediate diffusion, the physical diffusion is larger than the inherent numerical 

dissipation in the target grid, but smaller than a possible inherent numerical dissipation in some 

coarse grids 

• case 4: e ~ 1-0, large diffusion, the physical diffusion is 0(1) 

• case 5: e « 103, very large diffusion, the problem is diffusive dominated 

Tables 7.1 and 7.2 contain the asymptotic and geometric-average convergence rates for V(l,l) cycles on 

uniform and stretched grids respectively. Both the solvers present fast grid-independent convergence rates 

for problems with a non-negligible diffusive part (cases 2-5). However, as was previously shown in Section 6, 

the convergence rate becomes grid dependent without explicit CCI terms for convection dominated problems 

(case 1). 

TABLE 7.1 
Asymptotic/geometric-average convergence rate for the solver-case combinations for the convection-diffusion problem. 

643 

case 1 case 2 case 3 case 4 case 5 

solver 1 0.06/0.06 0.10/0.09 0.09/0.07 0.07/0.05 0.05/0.05 

solver 2 0.27/0.31 0.09/0.08 0.09/0.07 0.07/0.05 0.05/0.05 

1283 

case 1 case 2 case 3 case 4 case 5 

solver 1 0.10/0.08 0.10/0.09 0.09/0.07 0.07/0.05 0.05/0.05 

solver 2 0.42/0.46 0.09/0.07 0.09/0.07 0.07/0.05 0.05/0.05 

8. Parallel Implementation. The main advantage of the multigrid algorithm proposed in this report 

is its parallel potential. We now describe a parallel implementation of the algorithm, based on MPI, and its 

efficiency on two different parallel systems; a Cray T3E-900 (T3E) and an SGI Origin 2000 (02K). 

The test problem chosen in the experiments carried out in this section is the convection-diffusion equation 

(7.3) with boundary conditions (7.4), so that g(y,z) = cos(u}(y + z)), and FilMth = 0. We have selected 

frequencies w = 8?r and 16TT for 643 and 1283 grids respectively, with tv = tz = 0.5 as non-alignment 

parameters and e « 10-4 as the diffusive value (case 1 in the previous Section). The initial approximation 
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TABLE 7.2 
Asymptotic/geometric-average convergence rate for the solver-case combinations for the convection-diffusion problem with 

grid stretching. 

643 

case 1 case 2 case 3 case 4 case 5 

solver 1 0.11/0.08 0.15/0.12 0.15/0.10 0.13/0.09 0.16/0.09 

solver 2 0.24/0.21 0.15/0.13 0.15/0.10 0.13/0.09 0.16/0.09 

1283 

case 1 case 2 case 3 case 4 case 5 

solver 1 0.12/0.09 0.15/0.11 0.15/0.11 0.14/0.09 0.14/0.09 

solver 2 0.30/0.38 0.15/0.13 0.15/0.13 0.14/0.09 0.14/0.09 

was interpolated from the solution on the previous coarse grid. 

8.1. Cray T3E and SGI Origin 2000 Architectures. The T3E that we have used in this study 

is based on the DEC Alpha 21164 (DEC Alpha EV5) processor running at 450 MHz. This processor has 

two levels of caching on-chip (8-KB first-level instructions and data caches, and a unified 96-KB second-level 

cache). However, unlike other systems, the EV5 contains no board-level cache. The nodes (or processors in 

this case) are connected by means of a 3-D torus network, whose links provide a raw bandwidth of 600 MB/s 

in each direction [5, 1]. Nevertheless, the effective communication bandwidth obtained with the classical 

ping-pong test is approximately 300 MB/s (around half of the peak) [32]. 

The 02K employed consists of 32 MIPS R10000 processors running at 250 MHz. This processor has 

32-KB primary data and instruction caches on chip, but its unified 4-MB L2 cache is external. Unlike the 

T3E, each 02K node consists of two processors connected by a system bus (SysAD bus). Along with the 

processors, each node has a portion of the shared main memory (512 MB in our system), a directory for cache 

coherence, an I/O interface, and the Hub, which is the combined communication/coherence controller and 

network interface. The network is based on a flexible switch called SPIDER. Two nodes (four processors) are 

connected to each switch through their Hubs. Systems with 32 processors, such as the one that we have used, 

are created from a three-dimensional hypercube of switches where only five of the six links on each router 

are used. The peak bandwidth of the bus that connects the two processors and the Hub's connections to 

memory and routers is 780 MB/s. However, at user level, the actual effective bandwidth between processors 

is much lower than the peak, due to the cache-coherency protocol and other overheads [5, 20]. Using MPI, 

the maximum achievable bandwidth is only around 140 MB/s [32]. We should mention that in this system, 

we have combined MPI with the SGI dplace tool in order to disable the automatic page migration, which is 

not useful in MPI programs, and also to specify the distributions of threads onto memories since both these 

characteristics improve performance [39]. 

8.2. Parallel Strategies. Basically, one can adopt two different strategies to get a parallel implementa- 

tion of a multigrid method: domain decompositions combined with multigrid (DD-MG) and grid partitioning 

(MG-DD). 

The DD-MG approach consists in applying a domain decomposition on the finest grid, and using a 

multigrid method inside each block. These kind of methods are often considered with finite element dis- 

cretization since they are easier to implement and can be directly applied to general multi-block grids. From 

an architectural point of view, they also imply fewer communications since they are only required on the 

finest grid. However, they lead to algorithms which are numerically different to the sequential version and 
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have a negative impact on the convergence rate [40]. 

We have limited this research to the MG-DD technique. In this approach, multigrid is used to solve 

the problem in the whole grid, i.e. domain decomposition is applied on each level. Therefore, it implies 

more communication overheads since data exchange is required on every level. However, unlike DD-MG 

approaches, it retains the convergence rate of the sequential algorithm [24]. Regarding multi-block grids, 

we should mention that an adequate hybrid approach, where the V-cycle is applied throughout the entire 

domain while the smoothers are performed inside each block (domain decomposition for the smoother), has 

been proposed in [21, 22]. 

As is well known, for three-dimensional domains three different decompositions are possible (see Figure 

10). Common grid transfer operators such as linear interpolation and full weighted restrictors are parallel 

by nature. Hence, regarding these operators, it does not matter which decomposition is chosen. However, 

2-D and 3-D decompositions require a parallel plane solver for the smoothing process. Therefore, as we have 

employed an alternating-line smoother in the plane solver, such partitionings need a parallel tridiagonal 

solver. This problem has been widely studied (see for example [19, 16, 26, 18, 11]). More specifically, we 

have studied, in [12, 13], tridiagonal solvers in the context of an alternating line process such as the plane 

smoother of our multigrid algorithm. In particular, we have revised a Pipelined Gaussian Elimination method 

[31, 30], Wang's algorithm [43], and several methods based on data transpositions [13]. The experimental 

results obtained on a T3E-900 with up to 512 processors have been quite satisfactory for large and even 

moderate 2-D problem sizes (from a 10242 problem size), with parallel efficiencies in the range 0.7 to 0.9. 

However, current memory limitations prevent us from solving 3-D problems whose corresponding 2-D planes 

are big enough to obtain reasonable efficiencies on medium-sized parallel computers. 

We have taken the decision, based on these results, to use a 1-D data decomposition in the semi- 

coarsened direction, since it does not require a parallel 2-D solver. Considering that our code was written 

in C language, where 3-D matrices are stored in a row-ordered (x,y,z)-array, YZ and XZ-planes represent 

continuous data (except for the gap between different z-columns), while XY-planes reference data that have 

a stride of twice the number of elements in dimension Z (see Figure 11). Consequently, x-semicoarsening 

and y-semicoarsening are more efficient than z-semicoarsening, because they exhibit a better spatial locality. 

For the same reasons, x and y-semicoarsening are also the best choice in terms of message passing, since 

the effective communication bandwidth on the systems under study also presents a significant dependence 

on the spatial locality of the messages [32, 33]. Just to give a few results, using the Apprentice profiling 

tool on the T3E, we have recorded that for a 643 problem size on a two-processor simulation the time spent 
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FIG. 11. Access patterns for different planes 

performing data cache operations using z-partitioning is about 17% larger than with the x-partitioning [32]. 

All the experimental results presented in this paper have been obtained using an x-direction partitioning, 

that is, x-semicoarsening combined with YZ-plane smoothers. 

Regarding data locality, we should mention that in order to improve the data locality of iterative methods 

some authors have successfully employed different techniques, such as data access transformations (loop 

interchange, loop fusion, loop blocking, and prefetching) and data layout transformations (array padding 

and array merging)[36, 35, 10]. Our codes have been compiled using aggressive compiler options (Ofast=ip27 

on the 02K and 03 on the T3E), but we have not employed any data transformations to optimize cache 

reuse. However, plane smoothers allow a better exploitation of the temporal locality compared to common 

point smoothers, which have to perform global sweeps through data sets that are too large to fit in the cache. 

8.3. Critical Level Problem. Although 1-D decompositions have no need for a parallel plane smoother, 

they also present some drawbacks caused by the need to solve exactly the linear system of equations on the 

coarsest grid. In sequential algorithms, the coarsest level is usually chosen as coarse as possible to reduce 

the computational cost. However, in the parallel versions, this decision may cause some processors to remain 

idle on the coarsest grids. To clarify this problem, it is convenient to define the multigrid critical level as 

the level L where the following condition is satisfied: 

N(L) 
(8.1)  ^5 = 1 v     ' coef ■ P 

where N(L) is the local number of cells per side of level L in the partitioned direction. The parameter 

coef depends on the smoother: 1 for damped Jacobi, 2 for zebra and 4 for four-color. P is the number 

of processors. So, the critical level is the coarsest level at which all processors can perform the smoothing 

operation concurrently, or in other words, the multigrid level where each processor has one local plane in the 

case of a damped Jacobi smoother, two planes for a zebra update and four planes in the case of a four-color 

update. Below the critical level, the parallel algorithm has load-balance problems that reduce its efficiency 

since the number of idle processors is doubled on every level below the critical one.   It also complicates 
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its implementation, because as we go down below the critical level, we have to dynamically rearrange the 

communication patterns and grid distributions. 

2-D and 3-D decompositions can help to reduce this problem. For example, for 3-D decompositions, the 

critical level is defined as the finest level L where the following condition is satisfied: 

f82l NX(L) N,(L) NZ(L)     _ 
(     ' [coef-Px      coef-Pv      coef ■ Pz> 

where NX(L), Ny (L) ,NZ{L) are the local number of cells per side on level L in direction x, y and z respectively, 

and Px, Py and Pz are the number of processors in direction x, y and z respectively. 

Without losing generality, we can assume Px = Py = Pz = P~1/3, where P is the total number 

of processors, and NX{L)= Ny(L)=Nz(L) = N(L). Therefore, the critical level L satisfied the following 

condition: 

(8-3) coe/ . p-i/3 = * 

Comparing expressions (8.1) and (8.3), it is evident that the critical level is coarser in 2-D and 3-D 

decompositions. In addition, for a 3-D regular application the communication requirements for a process 

grow in proportion to the size of the boundaries, while computations grow in proportion to the size of 

the entire partition. The communication to computation ratio is thus a surface area to volume ratio and 

so the 3-D decomposition leads to a lower inherent communication-to-computation ratio. However, 3-D 

decompositions require non-contiguous boundaries and, as discussed in [32, 33], the effective bandwidth is 

reduced due to non-unit-stride access. In fact, 2-D data partitioning is found to be a trade-off between the 

improvement of the message data's locality and the efficient exploitation of the underlying communication 

system. However, as we have explained above, 2-D decompositions are not satisfactory when a plane-wise 

smoother is employed. 

Some alternatives, which can be applied to 1-D decompositions, have been proposed to relieve the 

critical-level problem. Among these, we can mention in particular: 

• Agglomeration on coarsest grids [28]. Multigrid may be faster using only one processor on the 

coarsest grids (below the critical level) because the communication overhead is reduced. In our 

application, it increases the overall execution time since in using x-semicoarsening and a plane-wise 

smoother, the time spent by the sequential algorithm on the coarser grids is not negligible. 

• Parallel superconvergent multigrid [15, 27, 14]. This approach keeps the processors busy below the 

critical level using multiple coarse grids. Although it slightly increases the execution time, since extra 

work is necessary to merge the solutions of the different grids, it may improve the convergence prop- 

erties of the method. Nevertheless, in our case, we have not found any satisfactory merging operator. 

• U-Cycle method [44]. This approach avoids idle processors fixing the number of grid levels so that 

the coarsest grid employed is the critical one. However, the number of iterations needed to solve the 

system of equations on the coarsest problem grows with system size, and the time expended on the 

coarsest level becomes dominant [34, 37, 38]. 
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FIG. 12. Parallel efficiency of four-color smoother (FCS) and hybrid smoother (HS) V(l,l)-cycles obtained on a SGI 

Origin 2000 (left-hand chart) and a Cray TSE (right-hand chart) using 643 uniform grids for up to 32 processors. 

8.4. Hybrid Smoother Strategy. We have opted to relieve the critical level problem by changing the 

smoother operator. As is well known, the four-color smoother (FCS) exhibits finer granularity than other 

common smoothers such as damped Jacobi or zebra. So, in order to improve the granularity of the solver, 

we have implemented a hybrid smoother (HS) that uses a four-color update in and above the critical level, 

a zebra smoother at the level where every processor has two planes, and a damped Jacobi method below 

that level. As we will show, although this smoother degrades the convergence properties of the method, it 

improves the execution time of the multigrid cycle. Taking both factors into account, this approach can be 

seen as a trade-off between the numerical and the arquitectural properties. 

Figure 12 shows the efficiency of one V(l,l) multigrid cycle on a 643 uniform grid obtained on the T3E 

and 02K systems using both FCS and HS. As usual, the efficiency has been defined as p^, where Ts is 

the execution time of the V(l,l) sequential cycle using FCS and five multigrid levels, P is the number of 

processors and Tp is the execution time of the parallel V(l,l) cycle. 

Obviously, the lower the number of levels, the higher the efficiency, because the computation-communication 

ratio is higher. A similar efficiency pattern is exhibited in both systems because the inefficiency is mainly 

due to the load imbalance below the critical level. The overhead due to interprocessor communication is 

very low. Notice that the efficiency does not decrease to below 1 when the coarsest level is finer than the 

number of processors. Although we have included results for 32-processor simulations, it is obvious that a 

643 problem is not big enough to obtain satisfactory efficiencies in this case. As expected, HS presents higher 

efficiencies because its granularity is higher below the critical level. 

Despite this, as Figure 13 shows, the convergence rate per multigrid cycle strongly depends on the 

smoother. Consequently, as the convergence factor of the parallel algorithm may differ from that of the 

sequential version, in order to compare both alternatives we should use another definition of efficiency which 

includes both numerical (convergence) and architectural (parallel) properties. We have opted to use an 

efficiency definition based on the execution time needed to solve the whole problem, i.e. to reach a certain 

residual norm. In particular, we have chosen 10~12 and the corresponding efficiency will be referred to 

hereafter as the realistic parallel efficiency [25]. Figure 14 shows this realistic efficiency on both systems. 

In the FCS approach, the realistic efficiency is similar to the efficiency of one V(l,l) cycle, since the 

convergence rate does not suffer any significant deterioration. This is not the case of the HS approach. 

However, despite the convergence deterioration caused by this technique, this is the best choice on both 
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FIG. 13. Convergence factor of four-color smoother (FCS) and hybrid smoother (HS) V(l,l)-cycles on a 643 uniform grid 

for different multigrid levels. 
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FIG. 14. Realistic parallel efficiency of four-color smoother (FCS) and hybrid smoother (HS) V(l,l)-cycles obtained on a 

SGI Origin 2000 (left-hand chart) and a Cray T3E (right-hand chart) using 643 uniform grids for up to 32 processors. 

systems. Figure 15 shows the realistic efficiency on the 02K for the 1283 problem size. Due to memory 

limitations, we cannot obtain results on the T3E for bigger problems. In this case, an HS with five multigrid 

levels, a trade-off between numerical and parallel properties, is the best choice and satisfactory efficiencies 

(higher than 0.8) are obtained for up to 32 processors. 

9. Conclusions and Future Work. The combination of semicoarsening, a four-color plane-implicit 

smoother and the introduction of explicit CCI terms in the discretization of all grids yields an efficient highly 

parallel multigrid solver for the convection-diffusion equation with fast grid-independent convergence rates 

for any angle of non-alignment. This solver permits the parallel solution of a convective process that is 

sequential in nature. 

We have opted to employ a 1-D grid partitioning in the semicoarsened direction. This solution avoids 

the parallel implementation of the plane solvers that has been previously reported to have a low efficiency for 

small problems. One-dimensional x-semicoarsening is the best choice in terms of message passing since the 

effective communication bandwidth on the systems under study (Cray T3E and SGI Origin 2000) presents a 

significant dependence on the spatial locality of the messages. Below the critical level, the parallel algorithm 

has load-balance problems that reduce its efficiency since the number of idle processors is doubled on every 
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FIG. 15. Realistic parallel efficiency of four-color smoother (FCS) and hybrid smoother (HS) V(l,l)-cycles obtained on 

an SGI Origin 2000 using 1283 uniform grids for up to 32 processors. 

level below the critical one. It also complicates its implementation, because as we go down below the critical 

level, we have to dynamically rearrange the communication patterns and grid distributions. 

Different alternatives have been studied in order to avoid the critical level problem: agglomeration on 

coarsest grids, the parallel superconvergent method and the U-cycle approach. Finally, the critical level 

problem is relieved by using a hybrid smoother that applies the optimal smoother on each level in terms of 

its convergence rate and granularity. The hybrid smoother uses a four-color update on and above the critical 

level, a zebra smoother at the level where every processor has two planes, and a damped Jacobi method 

below that level. Although this smoother degrades the convergence properties of the method, it improves the 

execution time of the multigrid cycle in a parallel setting. Taking both factors into account, this approach 

is found to be an optimal trade-off between the numerical and the arquitectural properties. Satisfactory 

efficiencies (higher than 0.8) are obtained for up to 32 processors on a 1283 uniform grid. 

Although not included in this report, experiments with pointwise smoothers were also performed. On 

finest grids, where the direction of the strongest coupling approximately coincides with the characteristic 

direction, a pointwise smoother can be as efficient as a plane-implicit smoother. Using pointwise smoothers 

on the finest (most expensive) grids considerably reduces the work-unit count of the approach. The coupling 

analysis provides a criterion to switch between point and plane smoothers in the multigrid cycle. Such 

an approach was successfully applied in [7] for 2-D vertex-centered grids and its extension for 3-D cell- 

centered grids will be a subject for future studies. We intend to continue the work on the effective solution 

of convection-dominated problems. In particular, we will apply the CCI correction technique to improve 

the parallel properties and convergence rate of the multigrid resolution of the Navier-Stokes equations by 

distributive smoothers. 
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